当前位置:首页>考研>正文

九年级数学课件(二年级数学课件)

       

本篇文章给大家谈谈九年级数学课件,年级年级以及二年级数学课件对应的数学数学知识点,希望对各位有所帮助,课件课件不要忘了收藏本站喔。年级年级

九年级数学创优课件

九年级的数学数学数学对于成绩不好的同学来说,需要很努力才能学好。课件课件我为大家整理的年级年级九年级数学创优课件,希望大家喜欢。数学数学

九年级数学创优课件1

教学目标:

1、课件课件能用综合法来证明矩形的年级年级性质定理和判定定理以及相关结论。

2、数学数学初步运用矩形的课件课件性质定理和判定定理解决问题。

3、年级年级经历探索、数学数学猜想、课件课件证明矩形的性质定理和判定定理的过程,进一步体现的证明的必要性、进一步发展合情推理和演绎推理能力。

教学重点 :

1、能用综合法来证明矩形的性质定理和判定定理以及相关结论。

2、初步运用矩形的性质定理和判定定理解决问题。

教学难点 :

运用矩形的性质定理和判定定理解决问题

教学方法:

1、通过学生阅读课本和回顾以前所学的知识以小组为单位得到矩形的性质定理和判定定理。

2、以《导学方案》为基础,采用小组讨论、学生分析(讲解)、教师引导启发的方法来完成本节课的教学。

教具准备:

三角板   多媒体展台

学情分析:

九年级学生有了一定的自学能力,提出问题、分析问题、解决问题的能力和归纳总结能力,都有了自己的独特的学习方法,有自己对问题独特的见解;他们更愿意在班里向其他同学展示自己,以此来获得很大的成就感,来树立自己在同学中的形象。不足之处在于对问题认识不全面,分析不透彻,方法单一等,需要通过合作交流才能得到正确的结论。

学生在初二的时已经探究过特殊的平行四边形(矩形、菱形、正方形)的性质和判定方法,且用其解决过简单的问题。在本章前三节中证明和掌握了平行四边形的性质定理和判定定理及其应用;经历了三角形中位线定理的证明过程,学生已经能从边、角、对角线的角度来研究特殊平行四边形的相关性质和判定定理,为学习本节课奠定了基础。

教学过程:

(一) 导入明标

1. 本节课的学习目标是:(师读或投影展示)

(1) 能用综合法来证明矩形的性质定理和判定定理以及相关结论。

(2) 初步运用矩形的性质定理和判定定理解决问题。

2. 学生阅读《导学方案》73页问题导学,想一想小红和小亮所争论的这个数学问题,你同意谁的说法?你能说明你的理由吗?(可以小组讨论)学生回答

用不用这个“∠A=300”这个条件呢?本节课学习完后我们就可以顺利的解决这个问题了。

(二)自主学习,合作交流,展示点拨

活动一:

1、在初二的时候,我们已经探究过特殊的平行四边形,请同学们阅读课本95页的内容,并结合以前初二学习过的特殊的平行四边形的有关内容,独立完成《导学方案》73页中“教材导读”部分的前两个问题;并回答完成下列问题:

①什么叫矩形?

②矩形有哪些性质?

③矩形的判定方法有几种?

④证明“对角线相等的平行四边形是矩形”。

2、小组交流完成情况,并解决自学中问题。

本环节在回顾矩形有关结论的基础上,展开对矩形的性质和判定定理证明过程的探究,进一步体验证明的必要性

(问题预设)

(1)、根据命题规范地用几何符号语言写出已知、求证。

(2)、证明“对角线相等的平行四边形是矩形”的证明方法。

3、小组展示“教材导读”部分的第二个问题及补充的第四个问题。

4、教师强调几何符号语言的规范书写,学生补充总结两个问题的多种证明方法。

活动二:

5、①学生自主完成《导学方案》73页中“教材导读”部分的第3、4个问题。

②得到推论:直角三角形斜边上的中线等于斜边的一半。

③小组交流完成情况。

6、那这个推论的逆命题是真命题还是假命题呢?

①学生叙述逆命题。

②完成《导学方案》74页辩题设计。

③小组交流完成情况。

(三)记录收获,发现问题。

1、独立完成《导学方案》74页的收获与问题。

2、小组交流问题,共享收获。

(四)典型分析,巩固训练。

1、完成自主测评。这一环节独立完成

2、74页展题设计。独立思考、小组交流、全班展示

3、补充:四边形ABCD是木工师傅已经做好了矩形的桌面的平面图形,现在只有可以测量长度的直尺,问如何验证这个四边形桌面的平面图形是一个矩形?

(五)中考链接

如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四

九年级数学创优课件2

一、 内容简介

本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:

1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

二、学习者分析:

1、在学习本课之前应具备的基本知识和技能:

①同类项的定义。

②合并同类项法则

③多项式乘以多项式法则。

2、学习者对即将学习的内容已经具备的水平:

在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

三、 教学 / 学习目标及其对应的课程标准:

(一)教学目标:

1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理

数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同

角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难

和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

四、 教育理念和教学方式:

1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。

教学是师生交往、积极互动、共同发展的过程。当学生迷路的时

候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

2、采用“问题情景—探究交流—得出结论—强化训练”的模式

展开教学。

3、教学评价方式:

(1) 通过课堂观察,关注学生在观察、总结、训练等活动中的主

动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

(2) 通过判断和举例,给学生更多机会,在自然放松的状态下,

揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

(3) 通过课后访谈和作业分析,及时查漏补缺,确保达到预期的

教学效果。

五、 教学媒体 :多媒体 六、 教学和活动过程:

教学过程设计如下:

〈一〉、提出问题

[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析问题

1、 [ 学生回答 ] 分组交流、讨论

(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

(1)原式的特点。

(2)结果的项数特点。

(3)三项系数的特点(特别是符号的特点)。

(4)三项与原多项式中两个单项式的关系。

2 、 [ 学生回答 ] 总结完全平方公式的语言描述:

两数和的平方,等于它们平方的和,加上它们乘积的两倍;

两数差的平方,等于它们平方的和,减去它们乘积的两倍。

3 、 [ 学生回答 ] 完全平方公式的数学表达式:

(a+b)2=a2+2ab+b2 ;

(a-b)2=a2-2ab+b2.

〈三〉、运用公式,解决问题

1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

(m+n)2=____________, (m-n)2=_______________,

(-m+n)2=____________, (-m-n)2=______________,

(a+3)2=______________, (-c+5)2=______________,

(-7-a)2=______________, (0.5-a)2=______________.

2、判断:

(    )① (a-2b)2= a2-2ab+b2

(    )② (2m+n)2= 2m2+4mn+n2

(    )③ (-n-3m)2= n2-6mn+9m2

(    )④ (5a+0.2b)2= 25a2+5ab+0.4b2

(    )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

(    )⑥ (-a-2b)2=(a+2b)2

(    )⑦ (2a-4b)2=(4a-2b)2

(    )⑧ (-5m+n)2=(-n+5m)2

九年级数学圆与圆的位置关系课件

两圆的位置关系和两圆相交、相切的性质,是圆的重要概念性知识,也是今后研究圆与圆问题的基础知识。下面是我为大家整理的九年级数学圆与圆的位置关系课件,欢迎阅读。

一 【教材分析】

地位和作用:本节课是人教版九年级上册24章第2节的第3课时,是学生已掌握了点与圆、直线与圆的位置关系等知识的基础上,来研究平面上两圆的不同位置关系,是学生对圆的知识应用的基础,也是今后到高中继续研究平面与球的位置关系,球与球的位置关系的基础。因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。

二 【教学目标】

知识技能目标:

1、探索并了解圆与圆的位置关系。

2、探索圆与圆的位置关系中两圆圆心距与两圆半径间的数量关系。

3、能够利用圆与圆的位置关系和数量关系解题。

过程与方法:

学生经历探索圆与圆的位置关系的过程,培养学生的观察、分析、归纳、概括的能力;学会 “类比”、“分类讨论”、“数形结合”的数学思想;提高运用知识和技能解决问题的能力,发展应用意识。

情感态度目标:

学生经过操作、实验、确认等数学活动,体会运动变化的观点,量变产生质变的辨证唯物主义观点,感受数学中的美感。

教学重点与难点:

教学重点:探索并了解圆和圆的位置关系。

教学难点:探索圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系。

三【教法与学法分析】

1、课堂上本着人人学有用的数学,人人获得有价值的数学的新课程理念,从生活中的图形实例出发引入新课,并用动画演示,直观形象的展示圆与圆的位置关系,经过探索、讨论、观察、总结 、再运用的学习过程,逐步深入地探索知识和掌握知识,非常符合这个年龄段学生的认知特点;

2、改生硬的传授和呆板的讲课,着眼于直观感知和操作认识,从学生熟悉的实际出发,让学生看一看、想一想认识图形的主要特征与图形变化的基本性质,学会识别不同的圆与圆的位置关系的图形;

3、在课堂上赋予适当的教学说理,达到把知识由浅入深;从无规律到有规律;从直观认识到理性认识的数学学习过程,培养学生一定的合理推理能力以及增强学生的严密的思考能力,同时培养学生适当的数学素养。

四【教学程序设计】

1.创设情境,激发兴趣

2.提出问题,引导探究

3.动画演示,探索新知

4.归纳总结,整体感知

5.应用新知,拓展提高

6.布置作业,巩固加深

五【教学过程】

   1.创设情境,激发兴趣

设计意图:引导学生欣赏图片,激发学生对探索两圆位置关系的兴趣,由此引入到要研究的课题。(课件展示)

2.提出问题,引导探究

探究1:直线与圆的位置关系的几何特征是通过公共点来刻画的,请同学们猜想一下,圆与圆的位置关系按公共点分类能分成几类?

动手操作;在事先准备好的两张透明的纸上画两个半径不同的⊙O1和⊙O2,把两张纸叠合在一起,固定其中一张而移动另一张,你能发现⊙O1和⊙O2有几种不同的位置关系?每种位置关系中两圆有多少个公共点?

设计意图:让学生亲自动手实验,参与数学活动。

   3.动画演示,探索新知

设计意图:是让学生运用运动变化的观点观察两圆的位置关系的变化及公共点个数的变化情况,学会用类比和分类讨论的方法去研究两圆的位置关系。

学以致用

1.2008北京奥运会自行车比赛会标在图中两圆的位置关系是_____

2.在图中有两圆的多种位置关系,请你找出还没有的位置关系是__

3.请你指出生活中图片蕴含的圆和圆的位置关系( 图形在课件上)

设计意图:是让学生学会用数学语言表述问题,体会数学来源于生活,并服务于生活,增强应用意识。

探究2:影响直线与圆位置关系的数量因素是半径和圆心到直线的距离,那么影响圆与圆的位置关系的数量因素是什么?

探究2 是本节课的重点内容,教学中通过课件的动画演示,让学生探索出不同位置关系时两圆的圆心距(d)和两圆的半径(R和r)的数量关系。(观看课件动画)

设计意图:利用多媒体动画演示让学生直观形象地观察圆与圆的位置关系,学生能轻松的从数量关系的角度来探索两圆的位置关系,突破难点,体会数形结合的数学思想。

4.归纳总结,整体感知

通过前面的教学让同学们自己总结,填写下表:

圆与圆的位置关系

位置关系 图形 交点个数 d与R、r的关系

(Rr)

dR+r

d=R-r

设计意图:采用表格形式,将知识点归纳,通过表格很容易看出圆与圆的位置关系的分类情况,体会数形结合思想,以及两圆位置关系的判定方法,让学生形成清晰、系统、完整的知识网络。

   5.应用新知,拓展提高

例1:如图,⊙0的半径为5cm,点P是⊙0外一点,OP=8cm,

求:(1)以P为圆心,作⊙P与⊙O外切,小圆P的半径是多少?

(2)以P为圆心,作⊙P与⊙O内切,大圆P的半径是多少?

练习:圆O1和圆O2的半径分别为3厘米和4厘米,下列情况下两圆的位置关系是怎样?

(1) O1O2=8厘米 (2)O1O2=7厘米

(3)O1O2=5厘米 (4)O1O2=1厘米

(5)O1O2=0.5厘米 (6)O1和O2重合

设计意图:利用两圆位置关系与圆心距和半径之间的数量关系来解决问题。培养学生应用知识的能力。

6.归纳总结,布置作业

1)问题:回顾本节课的探究过程,我们懂得了哪些新知识,学会了哪些方法?

2)布置作业:A:课本习题14.3中第1、4、6题。

B :课余探索:和圆O1(半径为2)圆O2(半径为1)都相切且半径为3的圆共有几个?

设计意图:通过总结回顾本节内容,帮助学生学会归纳,反思,培养科学的认知习惯。作业布置注重了分层,让探究延伸到课外。

   六【教学评价】

1. 本节课的设计,我从生活中的图形实例出发引入新课,运用动画演示,直观形象地展示圆与圆的位置关系。让同学们经过探索、讨论、观察、总结得出结论。

2. 采用表格的形式将圆与圆的位置关系分类列出,既体现了分类思想,又体现了数形结合思想;把知识由浅入深,从直观认识到理性认识的数学学习过程,是学生真正理解和掌握基本的数学知识与技能、思想和方法,获得广泛的数学活动经验。

3. 通过课后作业的完成情况,进一步了解学生对圆与圆的位置关系的理解和掌握的程度。教师根据这些评价结果做出相应的反馈和调节,调整设计下节课或下阶段的教学内容,以达到尽可能好的教学效果。

九年级下册数学课件下载

懂得数学在现实生活中的作用,增强学好数学的信心.下面是我整理的相关内容,欢迎大家阅读参考!

九年级下册数学课件:位似

学习目标

1.通过实验、操作、思考活动认识位似形.

2.会利用位似形原理将一个图形放大或缩小.

4.懂得数学在现实生活中的作用,增强学好数学的信心.

重点:理解位似是由位似中心和相似比决定的.

难点:作位似图形以及求位似图形的相似比.

一预习展示:

1.课本110页数学实验室.

2..课本110页实践与思考.

二探究学习:

1.如图,已知四边形ABCD,用尺规将它放大,使放大前后的图形对应线段的比为1∶2.

2.如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1).

(1)以O为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;

(2)分别写出B、C两点的对应点B‘、C‘的坐标;

(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M’的坐标.

3、在AB=30m,AD=20m的矩形ABCD的花坛四周修筑小路.

(1)如果四周的小路的宽均相等,如图(1),那么小路四周所围成的矩形A′B′C′D′和矩形ABCD相似吗?请说明理由.

(2)如果相对着的两条小路的宽均相等,如图(2),试问小路的宽x与y的比值为多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD位似?请说明理由.

三课堂作业:

1.用作位似图形的方法,可以将一个图形放大或缩小,位似中心位置可选在 A.原图形的外部 B.原图形的内部 C.原图形的边上 D.任意位置

2.两个图形是位似图形,则它们一定相似,反过来,两个图形相似,则它们

A.一定位似 B. 一定不位似 C.不一定位似 D.对应点的连线交于一点

3.如图,矩形OABC的顶点坐标分别为O(0,0),A(6,0),B(6,4),C(0,4),画出以点O为位似中心,矩形OABC的位似图形OA’B‘C’,使它面积等于矩形OABC面积的 ,并分别写出A’、B‘、C’三点的坐标.

4.印刷一张矩形的广告牌,如图,它的印刷面积是32dm2,上下空白各1dm,两边空白各0.5dm,设印刷部分从上到下的长为xdm。四周空白处的面积为Sdm2.

(1)求S与x的关系式;

(2)当要求四周空白处的面积为18dm2时,求印刷这张广告牌的纸张的长和宽各是多少?

(3)在(2)的条件下,内外两个矩形是位似形吗?说明理由.

九年级下册数学课件:图形的旋转

教学目标

1、通过具体实例认识图形的旋转变换;培养动手能力和合情推理能力以及数学说理的习惯和能力。

2、通过各种图形的旋转,体验感受图形旋转的主要因素是旋转中心和旋转角度。

教学过程

一、创设情境

在日常生活中,除了物体的平行移动外,我们还可以看到许多物体的旋转的现象:宇宙中的星球运动 ,微观世界里的粒子运动 ,生活中的运动。

在下图中图形都可以看成是由一个或几个基本平面图形转动而产生的奇妙画面。

这些图形有什么特征?

这些图形都可以看成是一个图形绕着某一点旋转而形成的新图形。

如图,单摆上小球的转动,由位置P转到位置P′,像这样的运动就叫做旋转,这悬挂点就叫做小球旋转的旋转中心

旋转的概念:

注意:图形旋转时,每个点都按相同的方式旋转相同的角度 ,但每个点所经过的路线不同。

练习:1、下列现象中属于旋转的有( )个

①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动。A.2 B.3 C.4 D.5

2、香港特别行政区区旗中央的紫荆花图案由5个相同的花瓣组成,它是由其中一瓣经过几次旋转得到的?

二、探究归纳

如图(1),点A绕着点O转过80°到了点A′的位置,那么点A′与点A称为对应点,点O就是旋转中心,而∠AOA′的度数等于旋转角度80°。

如图(2),线段AB绕着点O转过60°到了线段A′B′的位置,那么线段A′B′和线段AB称为对应线段,而点B′和点 是对应点。

如图(3),△AOB绕着点O旋转45°到了△A′OB′的位置,那么图中旋转中心是点 ,旋转的角度是 ,对应点是 ,对应线段是 ,∠A与∠A′称为对应角,图中对应角还有 。

归纳 旋转中心在旋转过程中 ,图形的旋转是由 、 和 决定的。

三、操作探索活动

1、将△ABC绕点O按顺时针方向旋转到△A ′ B′ C ′的位置,度量∠AOA′ 、∠BOB′ 、∠COC′的度数, 线段AO与AO′,BO与BO′,CO与CO′的长度。

你发现了什么?△ABC与△A ′ B′ C ′是全等三角形吗?

思考:图形的旋转和图形的中心对称有什么关系?

四、实践应用

例1已知A点与点O,画出点A绕着点O旋转30°后的点A′

1、已知线段AB与点O,画出线段AB绕着点O按逆时针方向旋转80°后的图形。

2、已知△ ABC和点O,画出△ ABC绕着点O按逆时针方向旋转80°后的图形。

3、若改成多边形呢?你能总结出旋转作图的方法吗?

完成课本P58“例1、例2”

例2思考课本P60“交流与发现”,并完成“例4”

练习:如图,△ABC是等边三角形,D是BC边上一点,△ABD经过旋转后到达△ACE的位置。

(1)旋转中心是哪个点?(2)旋转了多少度?

(3)如果M是AB的中点,那么经过上述旋转后,点M转到了什么位置?

五、巩固提高

1、课本P74练习第1,2,3题

2、如图,△ABD按顺时针方向旋转成△ACE,写出图中的对应顶点、对应角、对应线段以及旋转中心和旋转角度,并试着写出图中相等的线段,相等的角(指两个三角形中的边和角).

3、 长方形ABCD中,连结BD,将△ABD旋转到△CDB处,写出旋转中心和旋转角度。

六、课堂小结

由师生共同归纳出图形旋转的有关要点:

(1)图形的旋转是将一个图形绕着一点顺(逆)时针转过某个角度;

(2)旋转中心在旋转过程中保持不动;

(3)图形的旋转是由旋转中心和旋转的角度决定的。

七、作业布置

课本P78习题15.2第1,4题。

九年级数学课件的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于二年级数学课件、九年级数学课件的信息别忘了在本站进行查找喔。


版权声明:本文为「序进百科网」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。  
原文链接:http://il3nx0zu.d-g-m.de/html/410b69098899.html
热门标签